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ABSTRACT

Concentrated research has lead to improved understanding and prediction of extratropical
cyclone development. Little research has been done on cyclolysis even though the decaying portion of
a cyclone’s life cycle, which begins after maximum intensity, poses maritime operational conerns.
Numerical simulations with high resolution coupled air/sea models and several detailed case studies have
lead to the hypothesis that friction parameterizations could have a profound affect on the accuracy of
numerical analysis and prediction of decaying cyclones. In this study, analyzed and forecast
characteristics of decaying cyclones over the North Pacific Ocean are related to the hypothesized
importance of friction-induced cyclone spin down. It is found that many observed and forecast
characteristics of cyclolysis, including gale area size and decay rate, vary according to the synoptic-scale
conditions in which the cyclone exists. Furthermore, no evidence is found for the hypothesized
relationship between cyclolysis and frictionally forced spin down in the analyzed and forecast model
data. This result might be expected since friction spin down is parameterized based on analyzed and
forecast winds over synoptic space and time scales. Therefore, it is concluded that over these scales
other factors, which may include energy transfers due to barotropic processes, contribute in a major way

to cyclone decay as portrayed in a global-scale numerical model.
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I. INTRODUCTION

There has been a great amount of research done on extratropical cyclones (e.g.
Newton and Holopainen 1990; Gronas and Shapiro 1994). This work has aided the
development of sophisticated numerical models that can now accurately simulate
cyclogenesis (e.g., Mullen and Smith 1990; Grumm 1993), even rapidly developing
events over the oceans (e.g., Sanders, 1986; Sanders and Auciello 1989; Sanders 1992)
on an operational basis. However, while much effort has been successfully directed
towards understanding and impfoving the prediction of the development portion of the
cyclone life cycle, not much consideration has been given to the decay stage. In
particular, only a few of the studies that document cyclone characteristics (e.g., Petterssen
1956; Klein 1957; Reitan 1974; Whittaker and Horn 1981) specifically examine the
characteristics of cyclolysis. Zishka and Smith (1980) constructed observed cyclolysis
distributions over North America for the period 1950 to 1977. They found two prominent
regions of cyclone decay along the Pacific coast of Canada and the northwestern U.S. and
in a region extending from Pennsylvania and New York to the Hudson Bay. Gyakum et
al. (1989) looked at North Pacific cold-season cyclone activity from 1975 through 1983
and found significant zones of dissipation to be located in the Gulf of Alaska and west of
the Kamchatka peninsula. They also found a relativel}.r high percentage of dissipating
cyclones that had previously developed rapidly (Sanders and Gyakum, 1980) to be located
in the region west and north of the Aleutians.

There has also been little theoretical treatment of cyclolysis aside frqm some

idealized numerical studies of nonlinear baroclinic wave life cycles (e.g., Simons 1972;




Gall 1976; Simmons and Hoskins, 1979, 1980) that have shown the importance of
barotropic processes as baroclinic waves occlude. The lack of attention to filling cyclones
may have left numerical models with inadequate physics, such as friction parameterizations
(e.g., Doyle, 1995), to properly simulate storms that are filling, but nevertheless, are still
near the peak of their intensity. Besides simply extending the range of predictability, and
providing important information for climate models (Simmons and Hoskins, 1980), more
accurate numerical simulation of decaying cyclones would enable better assessment of
accompanying weather phenomena such as high winds and precipitation. An improvement
in the prediction of filling storms over the oceans would be especially significant since
these storms can still pose major hazards to Navy and civilian maritime interests..

Three general model forecast errors that can be gleaned from the paucity of studies
that have directly addressed forecast error statistics during cyclolysis are that models tend
to move and fill storms too slowly and track them north and west of observed tracks.
Mullen and Smith (1993) examined sea-level cyclone forecasts produced by the Nested-
Grid Model (NGM) and the Aviation Run (AVN) of the T80 Global Spectral Model
(GSM) over North America and adjacent ocean regions for two cool seasons. They found
that filling storms were over forecasted by the NGM, and under forecasted by the AVN
(see also Grumm and Siebers, 1990). More recently, Grumm (1993) found the T126
version of the GSM to fill filling cycldnes too slowly. Harr et al. (1992) examined the
Navy, ,Operational Global Atmospheric Prediction System (NOGAPS; Hogan and
Rosmond, 1991) forecasts of cyclones over the North Pacific. They found the largest
negative central pressure errors (forecast pressure lower than observed) and negative track

errors (forecast position left of the actual track) to occur over the climatological regions




of cyclone dissipation in the Sea of Okhotsk, east of the Kamchatka Peninsula, and the
Gulf of Alaska.

In this thesis, the decay characteristics of analyzed and predicted extratropical
cyclones over the North Pacific Ocean in the NOGAPS is examined. The study period is
over the fourteen cool season months from January 1994 through February 1996, after the
most recent major upgrade to the NOGAPS model. The thesis is organized as follows:
An overview of cyclogenesis and the mechanisms of cyclolysis is provided in Chapter II.
The data and methodology for this study is described in Chapter III. The results are

presented in Chapters IV and a summary, conclusions and recommendations for future

research is given in Chapter V.







II. BACKGROUND

The Norwegian cyclone model (Bjerknes 1919; Bjerknes and Solberg 1921; 1922)
provides the foundation for our understanding of the development and evolution of
extratropical cyclones. According to this four stage model (Figure 2.1), cyclones form,
evolve and dissipate along fronts or narrow transitions zones that separate air masses with
contrasting properties such as temperature and moisture (Figure ﬁ.la). Disturbances
originate as small perturbations and és they develop potential energy which is due to the
juxtaposition of warm and cold air masses, is transferred to storm Kinetic energy by the
uplift of the "warm sector" air that resides between the cold and warm fronts, and the
sinking of colder air on the other sides of these fronts (Figure 2.1b). The disturbance
intensifies as the cold front advances faster than the warm front with the pressure at the
cyclone center decreasing and the circulation about it increasing (Figure 2.1c). As the
cold front overtakes the warm front at first near the cyclone center an "occluded" front
forms (Figure 2.1d). Gradually, the area of warm-sector air is reduced as it is lifted above
the advancing cold air and the reservoir of potential energy that drives the storm is
depleted and removed further from the cyclone center. When the cyclohe becomes cutoff
from its warm sector and potential energy is no longer available, the cyclone stops
deepening and begins to fill owing to friction. Thereafter, the cold front overtakes the
warm front at increasing distances form the cyclone center, the occlusion lengthens, and
the cyclone is transformed in a large cold vortex in the lower troposphere with warm air

still existing higher up (Figure 2.1e). The whole process comes to an end when the




cyclone ultimately takes on the character of a barotropic whirl, which loses its frontal
character and gradually dissipates.

Over the years, modifications of the Norwegian model have been made as
networks of upper-air observations, the formulations of quasi-geostrophic theory and
baroclinic instability theory, and the advent of computers and numerical models enabled
clearer insights about the dynamics of cyclones. For example, Carlson (1994) presents a
modern Norwegian or "dynamic" cyclone model that includes important upper-level
processes. According to this model, cyclogenesis can be understood in terms of a
geostrophic adjustment, self-development process that involves the interplay between
upper-level vorticity advection and lower-level temperature or thickness advection with
important contributions from diabatic heating at times. Specifically, upper-level positive
vorticity advection and the associated divergence downstream from an upper-level short-
wave trough deepens surface cyclone centers, while the subsequent increased low-level
temperature advection intensifies the upper-level vorticity advection by sharpening the
upper-level trough and downstream ridge.

Hoskins et al. (1985) frame cyclogenesis in terms of the evolution of tropopause-
and surface-based potential vorticity (PV) anomalies (Figure 2.2). From the standpoint of
this conceptualization, cyclones are the result of the superposition of two circulations that
are "induced" (Davis and Emmanuel, 1991) or "attributed" (Bishop and Thorpe, 1994) to
the upper and lower PV anomalies that are initially horizontally offset. Hirschberg and
Fritsch (1991a,b) discuss the important hydrostatic role that temperature anomalies
associated with tropopause undulations or PV anomalies play in cyclogenesis. According

to their model (Figure 2.3), the surface low center is always located under the warmest




column of air. During the initial stages of cyclogenesis, the surface low is underneath
warm tropospheric air and the relatively high and cold portion of a tropopause undulation.
As self-development continues, lower-stratospheric warm advection acts to deepen the
low, while upstream subsidence intensifies the stratospheric warm pool that accompanies
the low portion of the tropopause undulation. This upper-level warming hydrostatically
forces the low to move increasingly underneath the stratospheric warm pool and towards
an occluded configuration. The cyclone reaches its maximum intensity when the low is
directly underneath the warmest stratospheric layer.

In these dynamic models of cyclogenesis, cyclones become occluded when the
three-dimensional trough system including the surface low is more or less vertically
aligned or "stacked" and the necessary upper-level forcing for continued deepening has
moved well downstream. Unlike the original Norwegian model, the role of the fronts is
more or less passive and the process of occlusion is not due to frontal movement but
rather, is produced by a rearrangement of mass brought about by dynamic processes
(Carlson, 1994). With the deepening process over, the occluded cyclone begins to decay.
As discussed in the introduction, the processes of cyclone decay or "spin down" have not
been as thoroughly studied as those contributing to "spin up" even though the stages of
maximum intensity and cyclolysis typically characterize over one half of the cyclone life
cycle. However, two processes appear to be importan;c components of cyclolysis: the
barotropic transfer of kinetic energy to other scales, and frictional dissipation (Carlson,
1994).

From an energetics perspective (e.g., Smith, 1980), extratropical cyclones grow

from the conversion (Figure 2.4) of zonal available potential energy to eddy available




potential energy, and from the conversion of eddy available potential energy to eddy
kinetic energy. These baroclinic conversions occur through the advection of warm air
poleward and cold air equatorward and through the action of thermally direct (warm air
rising, cold air sinking) circulations, respectively. Another potentially important energy
transformation that occurs during the life cycle of a cyclone is the conversion of eddy
kinetic energy to zonal (or lower wave number) kinetic energy (Figure 2.4). This
barotropic conversion is determined by the product of the eddy transport of momentum
and the gradient of zonal momentum (Palmen and Newton, 1969) and generally transfers
kinetic energy upscale and away from the baroclinic wave. 1t is relatively small during
cyclogenesis but increases as the eddy flow intensifies and the upper waves tilt éuch that
westerly momentum is advected toward the zonal wind maximum (the jet). An example of
the variation with time of the baroclinic and barotropic conversions of energy during
simulations of idealized baroclinic waves can be found in Simmons and Hoskins (1979).
Their results show that up to day eight the baroclinic processes dominate and the energy
of the disturbance grows (Figure 2.5). Thereafter, the baroclinic conversions decrease in
magnitude while the barotropic conversion from eddy to zonal kinetic energy increases
and eventually becomes dominant (Simons, 1972).

The other important cyclolysis mechanism arises owing to friction. Two forms of
frictional dissipation have been shown to be important, the dissipation owing to internal
friction (Simmons and Hoskins, 1979) and the dissipation owing to boundary layer or
surface friction. In the planetary boundary layer (PBL), the balance between the frictional,

pressure gradient, and Coriolis forces,




fexv—aVp+F =0, 2.1
necessitates a cross-isobaric flow from high to low pressure. This implies a mass
convergence (divergence) in cyclonic (anticyclonic) circulations. By mass continuity the
convergence in cyclonic flow requires upward vertical motion out of the PBL, which
maximizes at the top of the layer. The flux that resuits from this frictionally induced
secondary circulation is often referred to as "boundary layer" or "Ekman" pumping.
Holton (1992) shows that the magnitude of the vertical motion is proportional to the
geostrophic vorticity. |

Although the frictional convergence in the PBL by itself might be thought to
spinup vorticity and act as a cyclogenetic agent, it in fact spins down vorticity and
contributes to cyclolysis. Qualitatively, the frictionally induced convergence in the
boundary layer is compensated for by divergence in the layer above (Carlson, 1994),
which results in cyclonic vorticity destruction. Holton (1992) shows that the degradation

of geostrophic vorticity owing to the secondary circulation is given by
Ce®) = Cg0) exp(-/Te), (22)
where Cg(O) is the geostrophic vorticity at the initial time # = 0 and 7, is the time it takes

the initial vorticity to decrease by a factor €, i.e., the “e-folding time”. He goes on to

show that in a barotropic atmosphere the secondary circulation extends throughout the full

depth of the vortex, which results in an e-folding time of
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where H is the height of the tropopause, fis the Coriolis parameter, and K, is the diffusion
coefficient. For typical mid-latitude synoptic scale values, 7, is on the order of four days,
which is significantly larger than the decay time that is due to viscous diffusion of the
order one hundred days. In a stably stratified baroclinic atmosphere, buoyancy forces
suppress vertical motion and the secondary circulation is restricted to the vicinity of the
boundary layer, which tends to reduce the effects of the friction. Carlson (1994) finds a
spin-down time on the order of ten days when taking into account the boundary layer
depth.

There have been relatively few studies that have directly examined the effects of
frictional dissipation on cyclones. In a theoretical study, Farrell (1985) found that the
inclusion of Ekman damping severely limits the range of unstable wave numbers as well as
the growth rates of the remaining instabilities. Numerical sensitivity studies by Graystone
(1962), Danard (1969), and Kuo and Reed (1988) found weaker cyclones in the presence
of surface friction. Anthes and Keyser (1979) found that friction increased the minimum
central pressure of an extreme case of cyclogenesis over land by almost 20 mb and
decreased the PBL winds by a factor of two. The greater frictional convergence resulted
in greater rainfall rates, despite a weaker storm intensity.

Signiﬁcantiy, the method by which boundary-layer friction is parameterized may
effect the simulation of cyclone life cycles including cyclolysis. The friction terms in the

mean-flow horizontal momentum equations are often written in the form:
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and 24)

p__1devw) 17,
YU op & T p&’

where the primes represent fluctuating or eddy quantities. In equation (2.4), the
covariance terms in parentheses are the eddy fluxes of momentum and are commonly

referred to as eddy stresses, which are denoted as 7y and 7;,. Since in general, the eddy

stress distribution is not known, approximations or closure assumptions must be used to
relate the stresses to other known quantities. A common method (Haltiner and Williams,

1980) is to assume that the surface stress is parallel to the surface wind and proportional

to a drag coefficient Cj such that

v,

s

7 =pC, Vi ; (2.5)
where the subscript "s" refers to surface values. The drag coefficient tends to vary with

wind speed, static stability, and roughness. It has a value of about 10-3 over water, but
may be several times that magnitude over land.

One possible source of error in numerical simulations of maritime cyclones is the
neglect of wind-wave interactions in the friction parameterization. In particular, under

neutral stratification and relatively rough flow

Cy(2) = K[In(z/2,)T 2, | 2.6)
where £ is the von Karman constant and z,, is the roughness length. Over the open ocean,

Zy 18 ‘typically given by the Charnock formula (Charnock, 1955)

z,=a—, 2.7
> Tgp
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where o is a constant. ~ Studies by Janssen et al. (1989), Janssen (1991) and Nordeng
(1991) suggest that the effect of wind-generated ocean waves can have an important
influence upon the wind stress. Ulbrich et al. (1993) found that increased surface
roughness in the Southern Hemisphere storm track significantly modified the tropospheric
circulation. Doyle (1995) performed high resolution numerical experiments with a
constant surface roughness, a roughness length from Charnock's formula, and a roughness
length obtained from a coupled ocean-wave/atmosphere mesoscale model.  The
parameterization method used to couple the wave-atmosphere models incorporates the
effects of a mixed sea with

T

go(1- 7,/ 1)V’

=P (2.8)

where 7 is the total stress, Ty, is the wave-induced stress, and B is a constant. Doyle found

that young ocean waves increased the effective roughness up to a factor of 5, changed the
drag coefficient up to 50%, increased the surface stress, and significantly decreased the
low-level wind speeds. Moreover, although the frictional changes owing to ocean waves
are complex, they appear to modulate the deepening rate during cyclogenesis and for the

purposes of this thesis augment the cyclone filling process.
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Figure 2.3. Schematic of the evolution of the temperature advection and vertical motion
patterns associated with a developing tropopause undulation and surface cyclone from

cyclone inception (I), to most rapid deepening (II), to maximum intensity (1II).
(Hirschberg and Fritsch, 1991b)
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Figure 2.4. Schematic energy and energy conversion diagram of the atmospheric system.
Bracketed symbols within the boxes refer to mean zonal (Z) and eddy (E) components
for kinetic energy [K] and available potential energy [A]. Energy inputs in the form of
diabatic heating [G] and frictional dissipation [D] are shown. Arrows denote the most
likely direction of the conversion between energy components for a large-scale mid-
latitude region averaged over the passage of many disturbances. Bold-faced arrows
denote a generally large rate of conversion, thin arrows a small rate of conversion and

broken arrows a very small rate of conversion or one that is not consistently in one
direction. (Carlson, 1994)
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Figure-2.5. Variation with time of various energy conversions and the net rate of energy
dissipation (dotted curve) in a numerical simulation of an idealized baroclinic wave.
Symbols A; and A; are the zonal and eddy available potential energies, and KZ and KE
the corresponding kinetic energies. Positive values of C(Az => Ap) imply a baroclinic

transfer from A, to A;, and negative values imply a barotropic transfer. (Simmons and
Hoskins, 1979).
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HI. DATA AND METHODOLOGY

Two different types of data sets were used to study the decay characteristics of
analyzed and predicted extratropical cyclones over the Nor;h Pacific Ocean. Specific
features associated with various sea-level pressure cyclones were defined from a data base
that is produced operationally by Fleet Numerical Meteorology and Oceanography Center
(FNMOC). Characteristics of the large-scale synoptic flow over the North Pacific Ocean
were defined from fields produced by the Navy Operational Global Atmospheric
Prediction System (NOGAPS). |

This study concentrates on cyclones that occurred during the autumn (i.e., October
- December) and winter (January - March) seasons. The period of study, which begins in
January 1994 and ends in February 1996, was chosen to coincide with the operational use
of NOGAPS Version 3.4, NOGAPS is a global spectral numerical weather prediction
model that contains data quality control, data assimilation, nonlinear normal mode
initialization and a sophisticated suite of physical parameterizations (Hogan and Rosmond,
1991). Version 3.4 operates at a spectral resolution of 159 waves with 18 vertical levels
that extend to 10 mb. The vertical coordinate is a hybrid system that follows the terrain at
low levels and constant pressure surfaces at upper levels.

A. SEA-LEVEL PRESSURE CYCLONE DATA

.. On an operational basis, forecast verification statistics that pertain to sea-level
pressure cyclones are produced at FNMOC. These statistics are computed from
physically relevant parameters that are defined by tracking individual cyclones (Harr et al,,

1992) that exist in the NOGAPS 0000 UTC and 1200 UTC daily analysis and. forecast
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sea-level pressure fields. A cyclone is defined in the analysis or forecast field by the
presence of at least one closed isobar. Each cyclone is given a unique identifier and
various physical features such as location and central pressure are stored in a large data
base. When an existing cyclone is no longer identifiable by a closed isobar in the analyzed
sea-level pressure field, the cyclone is finalized and all data that pertain to the life of the
cyclone are archived. The archived data are then used to define various forecast error
statistics. |

The archived data base of sea-level pressure cyclone characteristics were used to
define the physically relevant parameters needed to study the filling characteristics of
cyclones over the North Pacific Ocean. The deepening and filling stages of each cyclone
were defined by the analyzed central pressures. Deepening (filling) was defined as a
central pressure decrease (increase) over a 12-h period. To be included for study, a
cyclone must have existed for a minimum of 36 hours, deepened for a minimum of 12
hours to a minimum central pressure, and then filled for a minimum of 24 hours aﬁer
maximum intensity. Because cyclones at different latitudes with identical pressure
gradients do not produce the same maximum geostrophic winds, all central pressures were
normalized to a latitude of 42.5° north. This was necessary because étorms at different
latitudes with identical pressure gradients do not produce the same maximum geostrophic
wind. Using 42.5° as the reference latitude, the normalization technique for pressure
differences is AP, =AP (sin 42.5°sin ¢) where ¢ is the latitude of the pressure
comparison (Roebber, 1984).

Sea-level pressure cyclone characteristics at the time of maximum intensity,

maximum filling, and storm end were used to define various attributes of the filling

20




cyclones. A homogenous sample was insured by only choosing cases where data were
defined for all three stages of the filling life cycle.

Forecast central-pressure errors and position errors were computed by subtracting
the verifying analysis value from the forecast value. A negative (positive) central-pressure
error corresponds to a forecast pressure that is lower (higher) than the analyzed value and
is labeled as overforecast (underforecast). The forecast position error was defined as the
absolute distance (km) between the forecast and verifying analysis positions.

B. SYNOPTIC-SCALE FIELD DATA

One goal of this study is to identify aspects of filling cyclones with synoptic-scale
features over the North Pacific Ocean. Relevant synoptic features that are associated with
each cyclone obtained from the sea-level pressure cyclone data base were identified from
fields obtained from the NOGAPS analysis and forecast fields. The field data were
obtained on a 2.5° latitude/longitude grid, which corresponds to the standard output
products produced at FNMOC. Sea-level pressure fields were converted to departures
from a zonal mean. The zonal mean was removed under the assumption that a cyclone
will be limited to fill up to the background pressure field at the respective latitude. An
example of a sea-level pressure field that has been converted to departures from the zonal
mean is provided in Figure 3.1.

In addition to the filling characteristics that can be defined from the sea-level
pressure cyclone data base, other operationally and physically important parameters were
identified. These include the change in size of the cyclone as it fills and the change in the
size of the area enclosed by winds of gale force or stronger. The size of a cyclone is

defined by the area (km®) enclosed by the outer closed isobar in the analyzed and forecast
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sea-level pressure field after the zonal means have been removed. Similarly, the size of the
gale area is computed as the area containing wind speeds greater than 15 m s*. To
compute these areas, the sea-level pressure field was interpolated to a cylindrical grid that
was placed at the center of each cyclone. The cylindrical grid has a radius of 10 degrees
of Jatitude and data were interpolated to a 1 degree latitude spacing (Figure 3.2).

Several other characteristics of the filling extratropical cyclones were computed
from the combination of data from the sea-level pressure cyclone data base and the
NOGAPS field data. Each parameter was defined for the NOGAPS analysis and 48-hour
forecast fields. The rate of filling is defined in terms of an e-folding time (t.) given by

1. = {(dP/dt)/D}" 3.1
where P is the cyclone central pressure as defined in the cyclone data base and D is the
sea-level departure from the zonal mean.

The average wind inside the outer closed sea-level pressure isobar is defined at
1000 mb and 925 mb. Agradient winds are computed as a difference between the gradient
wind that is computed on the cylindrical grid and subtracted from the winds defined in the
NOGAPS fields. An average agradient wind inside the outer closed isobar is used as an
estimate of frictional influence at low levels.

The barotropic conversion of eddy kinetic energy to zonal kinetic energy (Kz to
Kg) is computed at 300 mb as: |

.. Bc = u'v' (du/dy) (3.2)
where u is the zonal wind, v is the meridional wind, and primed values represent a

departure from a zonal mean that is represented by the overbar.
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While combining the two data sets, approximately 50% of the field data did not
match with the cyclone data storms. There are several reasons for this. First, there were
several months of field data that were not available. Second, several data fields were not
available for different time periods. Lastly, some of the data was contaminated or not
saved properly.

In summary, by matching the sea-level pressure cyclone data with the synoptic-
scale field data, Aseveral characteristics of filling extratropical cyclonés were computed.
These attributes are based on featureé of the cyclone itself and on the synoptic-scale flow
over the cyclone region. Most comparisons will be made at three points in the life cycle of
the filling cycle. These are defined as the time that the cyclone is at maximum intensity,
the time of maximum filling, which is defined by the maximum 12-h change in central
pressure, and the last time that the cyclone is identified with an outer closed isobar. All

parameters are computed from the NOGAPS analysis and 48-h forecast fields.
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Figure 3.1. An example of a sea level D-value pressure field (mb). The D-value is the
departure from the zonal mean (SLP-ZM).
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) Area enclosed by outer closed isobar

Area enclosed by winds at gale force
or stronger

Figure 3.2. The 1° latitude cylindrical grid utilized for field data calculations. The radius
of the grid is 10° latitude and the surface low is located at the center. Example cyclone
and gale areas are stipled and hatched, respectively.
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IV. RESULTS

A total of 98 NOGAPS analysis Pacific cold-season storms in the study period met
the criteria defined in Chapter ITI. Of these 98, 60 analyzed storms had matches in the set
of 48-h forecasts. There are two portions of data analysis.  First, the cyclolysis
characteristics in the NOGAPS analysis for five track types over the North Pacific are
examined. Second, the 48-h forecast cyclolysis characteristics are examined to determine
if any systematic model differences are present.

For all analysis and 48-h forecast storms, the sea-level cyclone data from FNMOC
provided date, time, and position of storm genesis, maximum deepening, maximum
intensity, maximum filling, and storm dissipation. From this information, frequency
distributions of the above parameters were produced (Figure 4.1) by normalizing the
number of events in 5° latitude by 5° longitude boxes over the study period to 42.5°. In
addition, average/maximum deepening rates, maximum intensity central pressures,
average/maximum filling rates, average filling translational speeds, and filling translational
distances were calculated using the sea-level cyclone data.

A. ANALYSIS CHARACTERISTICS

It is evident from Figure 4.1, that there are three primary regions of cyclone
activity. Cyclones that form in the western Pacific, typically develop near the Kuroshio
current and either move meridionally into the Sea of Okhotsk or move zonally over the
central Pacific. Cyclones that form in the central Pacific, either curve northward to an
area just east of the Kamchatka Peninsula or move eastward into the Gulf of Alaska.

Secondary cyclones often develop in the eastern Pacific and then dissipate in the Gulf of
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Alaska. In general, these distributions closely correspond to those defined by Petterssen
(1956), Zishka and Smith (1980), Gyakum et al. (1989), and Harr et al. (1992). Not
surprisingly, many migrating storms dissipate in the well-known cyclolysis regions near the
Kamchatka peninsula and the Gulf of Alaska where deep semi-permanent lows reside.
Average deepening and filling rates (Figure 4.2) for the sea-level cyclones used in this
study are -6.33 mb/12-h and 4.19 mb/12-h. Gyakum (1983) defined an explosively
deepening cyclone (a bomb) as one that deepens 24 mb in 24 hours at 45° latitude.
Examination of the filling rates in Figure 4.2 reveals that there are also several instances of
explosive filling cyclones (anti-bombs) that fill at a commensurate rate of 12 mb in 12
hours.

To isolate analysis filling characteristics, the tracks from maximum intensity to
storm dissipation were developed for each cyclone. These tracks were then separated into
five different categories (Figure 4.3) based on inferred synoptic-scale flow patterns. The
five category types consist of: 1) western Pacific (west of 180°) storms that. dissipate in
the primary low located in the Sea of Okhotsk, 2) western Pacific storms that move
northward and dissipate east of the Kamchatka Peninsula, 3) central Pacific storms that
move zonally and dissipate in the Guif of Alaska, 4) eastern Pacific (east of 180°) storms
that curve and dissipate in the Gulf of Alaska, and 5) storms that originate and dissipate in
the open ocean. The statistical significance of track type one was concluded to be
questionable owing to the low number of storms in the category (Figure 4.3). Therefore,
results based on Type one will not be discussed.

Field data values for storms with matching NOGAPS analyses were determined for

the following parameters: D-value, gale area, cyclone area, cyclone equivalent radius,

28




500-mb geopotential height low and 200-mb temperature maximum offsets from the
surface low position, and 1000-mb and 925-mb gradient winds (Ve), agradient winds
(Vag), and observed winds (V). According to the modern conceptualization of
cyclogenesis (see Chapter II), storms stop deepening when the upper-level dynamics have
moved downstream of the surface low center and the upper-level trough is located directly
over it. The 500-mb low offsets (Figure 4.4) at the time of maximum surface low intensity
for each of the track types are consistent with this model. A case for the claim by
Hirschberg and Fritsch (1991 a,b) that occlusion occurs when the 200-mb warm pool is
over the surface low can be made with the 200-mb temperature offsets (Figure 4.5),
although there is a large amount of variability in the small sample.

A comparison of filling characteristics according to track type reveals a systematic
pattern of differences between track categories two and four and categories three and five.
This might have been expected since Types two and four move meridionally and dissipate
in areas of semi-permanent, primary low pressure systems, while Types three and five are
fast, zonally moving systems. In particular, Types three and five move much faster and
farther than two and four (Figure 4.6 and Figure 4.7). While Type two and four storms
have larger D-values from maximum intensity to maximum fill, the tend to be slightly
smaller than Type three and five storms (Table 4.1).

One of the more important characteristics examined was filling rate. Rather than
using_the pressure tendency to judge filling, we chose to evaluate an e-folding rate
parameter (t.) defined as the pressure tendency at the cyclone center divided by the
cyclone D-value at maximum intensity (Equation 3.1). Looking at the filling rates in terms

of 7. has the benefit of normalizing deep versus weak storms and also enables a
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comparison of our results with the theory of frictional decay. Examination of Table 4.1
and figure 4.8 shows that Type three and five storms tend to fill faster than Types two and
four storms. In particular, Types three and five decay at a rate that is one day faster than
Types two and four. This result, in addition to the finding that Types three and five
storms move faster, is consistent with Doyle’s (1995) hypothesis that faster moving
maritime cyclones decay more quickly due to increased wind-new wave interaction. The
faster decay rates for Types three and five are also consistent with the larger 1000-mb and
925-mb agradient winds (Vag) found in this category (Table 4.1).

There has been some speculation (Simmons and Hoskins, 1979) that storms fill at
about the same rate as they deepen. The analyzed average deepening rate/fill rate ratios
(Figure 4.9) found in this study contradicts this hypothesis. All five traLck~ types had
average ratios greater than one indicating that the average deepening rates were greater
than the average filling rates. The ratio of maximum deepening/filling rate was also
greater than one for all track types (Table 4.1).

Of high interest to forecasters concerned with maritime cyclones is the extent of
gale area assoéiated with the mature cyclone and how the gale area size changes as the
cyclone decays. Previous studies have not considered gale area characteristics during
cyclone evolutions. Not surprisingly, we find that the largest absolute gale areas, as well
as the ratio of gale area to cyclone size occurs at cyclone maximum intensity (Table 4.1).
Although Type five storms have the largest gale areas, there are no discernible trends
between categories. Of note, however, are the changes in gale area from cyclone
maximum intensity to the end of the storm (Figure 4.10). Once again, there are major

differences between Types two and four and Types three and five. Gale area changes for
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Types three and five are less variable than Types two and four. We postulate that this is
due to the fact that Type three and five storms consist of lows that form distinctive gale
area patterns in the open ocean, while Types two and four are complex lows in the
primary cyclolysis regions.

Finally, we examine whether the barotropic energy conversion and surface drag
mechanisms of cyclone decay that were discussed in Chapter II, are evident in the
NOGAPS analysis fields. Figure 4.11 shows boxplots of the barotropic conversion term
Bcin Equation (3.2). All five categories show the conversion to be positive, which means
that eddy kinetic energy of the storms is being converted to zonal kinetic energy.
However, the importance of this decay mechanism can not be determined.

A drag coefficient is often used to parameterize the effects of friction. In
particular, Carlson (1994) shows that the e-folding decay time 1. owing to friction is
given by

w = APi/(g p, Co V), Ry
where p, is surface density, V| is surface wind speed, AP is the depth of the friction later
(PBL), and Cp is the drag coefficient. Theory (Stull, 1988) and observations (Figure 4.12)
show that Cp increases with wind speed in a more-or-less linear fashion. Therefore, the
cyclon¢ decay rate should increase with increasing wind speed if friction is operating and
assuming that p, and APy are constant. The average observed 1000 mb and 925 mb wind
speeds and e-folding decay rates, 1. ,found for the five track types (Table 4.1) are
qualitatively consistent with these previous results. Storms in Types three and five have

larger average winds (until storm end ) and smaller t.’s then Type two and four storms.
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AVG E-FOLDING (days)
STORM CATEGORY 1 2 3 4

MEANS

STORM CATEGORY

MAX INTENSITY
MAX FILL
STORM END
FILL - INTENSITY
END - INTENSITY
END - FILL

STORM CATEGORY
MEANS

STORM CATEGORY
MAXINTENSITY 365
MAX FILL =315
STORM END -18.2
FILL - INTENSITY 392
END - INTENSITY 17.23 1013 § -0.208
END - FILL 13.32 7.54 i 757 0212 0219 3505 -0.193
A
Avg. Deep/Fill rate ratio (mb/12 hrs) Max Deep/Fill rate ratio {mb/12 hrs)
STORM CATEGORY 1 2 3 4 5 1 2 3
MEANS 1.50 2.38 1.50

257 0.045

STORM CATEGORY 1
MAX INTENSITY 752
MAX FILL 7.00
STORM END 6.08
FILL - INTENSITY 052
END - INTENSITY 143
END - FILL 092 05 23%
1000 mb OBSERVED WINDS(V - m/s) 925 mb OBSERVED WINDS(V - m/s)
STORM CATEGORY 1 2 3 4 1 2 3
MAX INTENSITY . 4 12, 1428 1691
MAX FILL
STORM END
FILL - INTENSITY
END - INTENSITY
END - FiLL

Table 4.1. NOGAPS analysis characteristic means for the five track types based on 98
total extratropical cyclones. Dark shaded boxes highlight the largest track value for each
parameter. Lightly shaded boxes highlight the second largest track type.

Of course, the actual decay rate of a cyclone may be dependent on other factors
beside friction. Schematically, the actual e-folding decay rate can be expressed as

Te = Teffriction) + Tep(barotropic conversion) + Teo{other sources} + T {sinks}. (4.2)
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To more quantitatively assess the cyclolytic effects of friction on the storms in our sample,
we examined the relationship between storm average e-folding decay rate, wind velocity
and drag coefficient. Our goal was to determine whether frictional drag can account for
the decay rates we observed. The premise is that if friction is a major influence on the
storm e-folding rates then a relationship between Cp and |V,| similar to that in Figure 4.12
should be present in the data. To examine this relationship the following “synoptic-scale”

expression for Cp was utilized

Co= (AP) /(g ps T [V)), (4.3)
where 7. is the average e-folding decay rate, |V| is the average 1000 mb or 925 mb
velocity for each storm and the ratio p, /AP; is considered a constant on the order of 10

Rather than finding that Cp increases with wind speed at a more rapid rate than
observed over calm water (Figure 4.12), which would be expected if wind-wave influences
were active (Doyle, 1995), we find that the parameterized Cp from model analyzed winds
decrease with wind speed (Figure 4.13) at a high degree of significance. This suggests
that the observed e-folding rates of these cyclones do not decrease as rapidly as does the

observed winds, which further suggests that other mechanisms are reducing the frictional

effect.
B. 48-h FORECAST ERROR RESULTS

The next portion of our study involved the statistical comparison of the 60 storms
that had matching analysis and 48-h forecasts and also met the selection criteria outlined in
Chapter III. The 60 forecast storms were placed in one of the five aforementioned track
categories (Figure 4.14) based on the corresponding analysis tracks. The frequency

distribution of the 48-h forecast storms are shown in Figure 4.15. These distributions,
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which were constructed from a smaller sample of storms than the analysis, generally show
the same patterns as the analysis distributions in Figure 4.1. The forecast maximum
deepening and filling rate histograms in Figure 4.2 are similar to the analysis although
there is a paucity of forecast weakly filling storms (Figure 4.16), which is unexplained.

Table 4.2 lists the mean forecast errors associated with the cyclolysis
characteristics for each track type. The forecast errors were calculated by subtracting the
analysis parameter from the 48-h forecast parameter. As indicated in the analysis results,
there are some notable differences between Types two and four and Types three and five.
Recall, Type two and four storms are relatively stationary, primary lows, and Type three
and five storms are fast moving, open ocean lows. According to FNMOC Performance
Summary (FNMOC, 1996), NOGAPS forecasts of large, primary lows that move
meridionally are more accurate than faster lows that move zonally. This is apparent in the
cyclolysis error statistics (Table 4.2) that show longer fill distance (Figure 4.17) and
greater fill speed (Figure 4.18) error for Types three and five storms compared to Types
two and four storms. In addition, Figure 4.17 and Figure 4.18 show more variability in
the errors associated with Type two and four storms. We believe this is also due to the
fact that Type two and four storms can be complex and variable systems that are part of
the semi-permanent lows near the Kamchatka Peninsula and the Gulf of Alaska. Of
operational interest are the gale area forecast errors (Figﬁre 4.19). Although there are no
distingtive forecast model tendencies, there is a large amount of variability between storm
categories.

Perhaps surprisingly, in light of wind-wave interaction theory (Doyle, 1995), there

is no evidence for any systematic under-prediction of cyclolysis in the 48-h NOGAPS
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model over the North Pacific. The D-value errors from maximum intensity to storm end

(Table 4.2) are small across all track types. Moreover, ignoring storm Type one results,

which are based on only two storms, the model over-predicts the filling of storms (Table

4.2 and Figure 4.20). For example, the average e-folding decay rate for type four storms

1s 0.94 days faster in the 48-h forecasts.

Table 4.2. Mean NOGAPS 48-h forecast error (F-A) for the five track ty;pes of

AVG E-FOLDING (days) MAX E-FOLDING (days)
STORM CATEGORY 1 2 3 4 2 3 4
MEANS 081 03 094 . 000 015
1000 mb FRICTION(Vag - m's)
STORM CATEGORY 2 3 4 5
MAX INTENSITY 014 120
MAX FILL 008
STORMEND
STORM CATEGORY
MEANS
STORM CATEGORY
MAX INTENSITY
MAX FILL
STORMEND 120 0.006
925 mb FRICTION(Vag - m's)
STORM CATEGORY 1 2 3 4
MAX INTENSITY
MAX FILL 000 | os0
STORMEND 210 | o7
Avg. deep rateffill rate (mb/12hrs)
STORM CATEGORY 1 2 3 4 5 1 2 3 4 5
MEANS : 0125 | 0239 0113 .03
1000 b winds (V - ms) 925 mb winds (V - mvs)
STORM CATEGORY 1 2 3 4 5 1 2 3 4 5
MAX INTENSITY 185 663 040 70 | 230 i 044 185
MAX FILL 075 030 23 | 010 005 300
STORM END 195 020 03 | 25 053 082 115

characteristics. Sample includes 60 matching analysis and forecast storms.
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Finally, a linear regression applied to the scatter diagram of synoptic-scale Cp,
calculated using Equation 4.3, versus 1000-mb and 925-mb average winds for the 48-h
forecast storms (Figure 4.21) exhibits a significant negative slope much like that found
with the analysis storm data (Figure 4.13). Once again, given the assumptions used to
calculate Cp, this indicates that other processes are offsetting the effects of friction.
Therefore we can not say all processes affecting cyclones during cyclolysis are equally
active in the analyses and forecasts, they do appear to combine to produce similar

resulting decay rates.
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Figure 4.4. Horizontal offsets (degrees latitude) of the 500-mb lows in relation to
corresponding surface lows in the NOGAPS analysis at the time of maximum cyclone

intensity for the five track types. The location of the surface low is at 0,0.
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Figure 4.5. As in figure 4.4, except for 200-mb temperature maximum offsets.
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925 mb analyzed winds. Linear regression line defines an inverse relationship between
Cp and winds. The low significance values indicate a very small probability that the
linear relationship is due to chance. :
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, characteristics of cold-season cyclolysis in NOGAPS analyses and
48-h forecasts over the North Pacific Ocean have been documented. Not surprisingly,
most cyclones over this region dissipate in the semi-permanent low centers near the
Kamchatka Peninsula and the Gulf and Alaska. The fill rates of these storms follow a
normal distribution with a small percentage of them filling rapidly or at “anti-bomb” rates.
When storms are segregated according to characteristic track types interesting differences
emerge. Most significantly, fast zonally moving storms tend to fill at a faster rate than
storms that move meridionally and become associated with the primary North Pacific
lows.

One of the motivations for this study was to determine whether there were any
systematic differences between analysis and forecast cyclone fill rates. Such differences,
especially those in which analysis storms fill faster than forecast storms, might suggest
inadequate frictional parameterization over the ocean. In particular, Janssen (1991) and
Doyle (1995) find that wind-wave interactions can affect the evolution of mesoscale
features associateci with cyclogenesis and have suggested that the increased roughness and
drag that result from these interactions might effect cyclolysis as well. However, no
evidenge is found in the present study to support the premise that the inclusion of wind-
wave interaction is important to simulating cyclolysis in global models. Firstly, no
significant underfilling rate errors are evident in the 48-h NOGAPS forecasts. If anything,

there is a tendency for the 48-h NOGAPS to overfill occluding cyclones. Moreover, if a
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wind-wave effect were operative, than the drag coefficient should increase with wind
speed at a faster rate than is typically the case (Figure 5.1). Not only is no such increase in
drag evident in either the analyses or forecasts, drag is actually forced to decrease with
wind speed. This suggests that at the synoptic scales considered in this study other
factors, in addition to frictional spin-down, are influencing cyclolysis.
B. RECOMMENDATIONS

Cyclolysis is a subject that has not been studied in the past as intently as
cyclogenesis. Therefore, the results presented here have few precedents to be compared
to. Certainly, a more complete study with a larger data base of storms including those in
other ocean basins and over land should be performed to ascertain if these initial findings
are robust. This study was particularly hindered by the lack of surface temperature and
wind information. In the future, 10-m NOGAPS fields should be used in the

determination of drag coefficients and other friction-related parameters. Higher resolution

1° NOGAPS fields would also improve reliability. More detailed statistical as well as
individual case studies should continue on wind-wave effects on cyclones. The
documentation that the 48-h NOGAPS handles cyclolysis relatively well is somewhat
surprising. It would be interesting to see whether longer duration 72-h to120-h forecasts
perform as well. Finally, the relationship between gale area and other cyclone
characteristics is a relatively unexplored topic, which is operationally important and that

merits further study.
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Figure 5.1. Schematic diagram of measured (solid line),
hypothetical wind-wave influenced (short—dashed line),

and NOGAPS synoptic (long-dashed line) drag coefficient
(Cd) versus wind speed (V).
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